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Three-dimensional flow over two identical (solid or liquid) spheres which are held 
fixed relative to each other with the line connecting their centres normal to a uniform 
stream is investigated numerically at Reynolds numbers 50, 100, and 150. We 
consider the lift, moment, and drag coefficients on the spheres and investigate their 
dependence on the distance between the two spheres. The computations show that, 
for a given Reynolds number, the two spheres are repelled when the spacing is of the 
order of the diameter but are weakly attracted a t  intermediate separation distances. 
For small spacing, the vortical structure of the near wake is significantly different 
from that of the axisymmetric wake that establishes a t  large separations. The 
partially confined flow passing between the two spheres entrains the flows coming 
around their other sides. Our results agree with available experimental and 
numerical data. 

1. Introduction 

Flows past droplets and solid particles are important in many natural and 
engineering applications such as air pollution, combustion systems, and chemical 
processes. Many investigations have considered the interactions between droplets or 
particles and the surrounding fluid by analytical and numerical methods. For 
sufficiently low or high Reynolds numbers, a theoretical analysis can be performed 
using singular perturbation expansions which involve linearization or the boundary- 
layer approximation. For flows at intermediate Reynolds numbers, which are most 
common in engineering applications, it is necessary to solve the Navier-Stokes 
equations numerically. 

The majority of the published numerical studies for intermediate Reynolds 
numbers have focused on flows past a single particle and are thus relevant only at  low 
particle concentration. I n  regions of large concentration, the drag coefficient is 
significantly different from that of an isolated particle a t  the same Reynolds number, 
and the lift and moment (torque) coefficients have finite values. In  order to 
understand the behaviour of a particle in a large-concentration region, studies of the 
interactions amongst particles are required. Unfortunately, in practice, the spacial 
arrangement of particles or droplets in a region of large concentration is quite 
complex and subject to  uncertainty, and calculations involving the entire region are 
at present not feasible. In  order to develop statistical approaches, information about 
individual droplet or particle interactions is needed. 

The study of droplet or particle arrays, particularly in flows a t  intermediate 
Reynolds number, is relatively new (Patnaik 1986). A particle array as discussed by 
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Rirignano (1983) consists of a few particles in a well-defined geometrical arrangement 
or a large number of particles in a periodic configuration. These arrays, although 
artificial, can provide information on particle-particle interactions and their effects 
on the ambient conditions in the vicinity of the particle. The simplification in the 
geometry allows a detailed and rigorous analysis. 

Tal, Lee & Sirignano (1983) studied the hydrodynamics and heat transfer in 
assemblages of solid spheres in a steady flow a t  Reynolds number 100 (based on the 
particle diameter and relative velocity). Their method took advantage of the periodic 
nature of an infinite array of spheres. They considered several spheres in tandem, and 
found a trend of decreasing drag coefficients in the streamwise direction. Tal, Lee & 
Sirignano (1984) also studied the interaction of two solid spheres in tandem in a 
steady uniform flow a t  Re = 40 for two different spacings using bispherical 
coordinates and indicated that the drag coefficient of either sphere is always less than 
that of a single isolated sphere and that the reduction is much greater for the 
downstream sphere. 

Patnaik (1 986) investigated the interaction of two vaporizing droplets in tandem 
at Re = 50 and 100 for interdroplet spacing equal to 4.25 diameters using the 
downstream solution of the lead droplet as the inflow conditions for the downstream 
droplet. He found that for both Reynolds numbers, the drag coefficient of the trailing 
droplet is lower than that of the leading droplet. 

I h j u  & Sirignano (1990) studied the interactions bet,ween two moving vaporizing 
droplets in tandem at 50 < Re < 200 for a range of spacings and droplet radii ratios. 
They found that the drag coefficients for both droplets are less than that of a solid 
sphere and, for the same Reynolds number, the trailing droplet has lower drag. 
Chiang & Sirignano (1992a, b)  extended this study to include variable properties and 
two and three droplets. With three droplets, the difference in drag coeficients 
between the second and third droplets is much smaller than for the first and second 
droplets. 

All of the above studies employed axisymmetric calculations. Recently, some 
numerical studies have been performed for three-dimensional flows over a single solid 
sphere. Dandy & Dwyer ( 1989) obtained three-dimensional numerical solutions for 
steady, uniform shear flow past a fixed, heated spherical particle over a range of 
Reynolds numbers (0.1 < Re d 100) and dimensionless shear rates (0.005 d a < 0.4). 
They found tha t  at a fixed shear rate, the lift coefficient is approximately constant 
over a wide range of intermediate Reynolds numbers, and the drag coefficient also 
remains constant when normalized by the drag for a sphere in uniform flow. 
Tomboulides, Orszag & Karniadakis (1991) performed a numerical study of three- 
dimensional flow past a sphere using a spectral element method for 30 < Re < 1000 
and discussed steady axisymmetric states and unsteady states with three- 
dimensional vortex shedding. 

Three-dimensional flow interactions between droplets or particles at  finite 
Reynolds number have not yet been studied. As a first step towards understanding 
the three-dimensional interactions in large concentration of particles, we investigate 
flow interactions between two identical (solid or liquid) spheres which are held fixed 
side by side against the uniform stream a t  Reynolds numbers 50, 100, and 150. We 
determine the effects of three-dimensional interactions on the lift, moment, and drag 
coefficients as a function of the dimensionless distance between the two spheres and 
Reynolds number. Some novel phenomena in the near wake are discovered as the gap 
between the two spheres decreases. Our results are also compared with available 
experimental and numerical data. 
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FIGURE 1. Plow geometry and coordinates. 

2. Problem statement and numerical solution 
We consider a steady three-dimensional incompressible laminar flow of a 

Newtonian fluid past two identical (solid or liquid) spheres held fixed, with the line 
connecting the sphere centres normal to a uniform stream, as shown in figure 1 ; d, 
denotes the distance, normalized by the sphere radius, from the sphere centre to  the 
x, y symmetry plane between the two spheres. Far upstream, the flow is uniform with 
constant velocity Urn i parallel to the x-axis. Two symmetry planes are noted in figure 
1 : the (x, z)-plane containing the centres of the two spheres and the (x, y)-plane 
located a t  z = -do midway between the sphere centres, 

We note that asymmetry of the flow past neighbouring bluff bodies might occur 
at lower Reynolds number than that of the first temporal instability for a single 
body. An example is the flow past two cylinders where flow asymmetry would occur 
well before the first temporal instability for a single cylinder. I n  contrast, we expect 
that, for the flow past two spheres, flow asymmetry would occur nearly 
simultaneously with the temporal instability since the interaction between the two 
halves (each containing one sphere) of the flow field should be stronger for cylinders 
than for spheres. That is, the flow between the two spheres is less constrained than 
the flow between the two side-by-side cylinders. 

Two coordinate systems are used in our formulation : the Cartesian coordinates 
(x, y, z) and the non-orthogonal generalized coordinates (&T, [). The origin of the 
former coincides with the sphere centre; and [ is the radial, r,~ the angular, and 5 the 
azimuthal coordinate. Owing to symmetry, the physical domain is reduced to one 
quarter of an ellipsoid-like space. 

The domain of the external flow is bounded by 1 < 6 < N,,  1 < 7 < N,, 1 < 6 < N3, 
where [ = 1 and Nl correspond, respectively, to the sphere surface and the far-field 
boundary surrounding the sphere; 7 = 1 and N, denote, respectively, the positive z- 
axis and the negative z-axis; 5 = 1 andN, refer, respectively, to  the (x, 2)-plane in the 
positive x-direction and the (x, 2)-plane in the negative x-direction. 

= 1 and 
N,, correspond to the centre and the surface of the sphere, respectively. y l  = 1 and 
N ,  denote the positive z-axis and the negative z-axis, respectively. CL = 1 and N3 refer 
to the (x,z)-plane in the positive x-direction and the (z,z)-plane in the negative 

The domain of the internal flow is 1 < 6, <Nil, 1 < 7, < N,,  1 < CL < N3, 
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z-direction, respectively. Within the liquid sphere, t1 = constant are a family 
of concentric spherical surfaces. Uniform spacing (&[ = $7 = Sc = 1) is used, for 
convenience, for the generalized coordinates in both flows. 

The non-orthogonal generalized coordinate syqtem of the external flow can be 
easily adapted to three-dimensional arbitrary geometries. We solve the continuity 
equation and the time-dependent Navier-Stokes equations and relax them to the 
steady-state solution, as will be discussed in detail in $2 .2 .  

2.1. Coverning equations and boundary conditions 
Since one of our goals is to study the flow interaction with liquid spheres, we present 
the equations for the flows inside and outside the spheres. However, for flow 
interactions with solid spheres, only the external flow equations are solved. The 
continuity and momentum equations inside and outside a sphere and the boundary 
conditions are non-dimensionalized using the sphere radius a,, as the characteristic 
length and I!,', as the characteristic velocity : 

external flow 

v. v =  0, (1) 

2 D V  
Dt Re - -wp+-v2 v; -- 

int'errial flow 

v - v = o ,  (3) 

DV 2 
Dt = -Vp1+-V2 q. 

Re1 
(4) 

The governing equations are written with respect to the generalized coordinates 
(&q ,  c), which allows a three-dimensional body of arbitrary shape to  be treated. The 
numerical integration is performed using a cubic computational mesh with equal 
spacing ($6 = &q = r3c = 1 )  (Anderson, Tannehill & Pletcher 1984). 

The conditions a t  the interface, [ = I or El = N,,, are derived by requiring 
continuity of the shear stresses and tangential velocities. Because no fluid is allowed 
to cross the surface of the liquid sphere, the normal velocities a t  the interface are zero 
in both flows. An interface condition for the pressure is obtained from the momentum 
equation. Since the interface is always spherical, it is more convenient to cast these 
conditions in terms of spherical coordinates ( r ,  8, q5) : 

where the subscript s denotes the surface of the liquid sphere. For the solid-sphere 
case, the no-slip condition is enforced on the sphere surface. 
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The external flow boundary Conditions are : 

p = O ,  u= 1, u = O ,  w = O  at [=N1exceptatz=-d, ,  (11)  

au av 9- _ -  - _ - -  - 0 ,  W = O  a t  z = - a o ,  aZ a2 a2 

where u, v, and w are the velocities of the external flow in the x-, y-, and z-directions, 
respectively. p is the pressure, and the subscript 1 denotes the internal flow. 
Equations (12) and (14) correspond, respectively, to the symmetry conditions in the 
x, y symmetry plane between the spheres and the x, z symmetry plane containing 
the centres of the spheres. Eyuation (13) expresses the no-flux boundary condition 
for p ,  u, and w on the axes I = 1 and I = N,,  and zero v-velocity in the x, z symmetry 
plane containing the two axes. 

The internal flow boundary conditions are 

where (15) and (16) correspond, respectively, to the no-flux boundary conditions at 
the centre of the droplet and on the axes T~ = 1 and N,, and zero v,-velocity in the 
x, z symmetry plane containing the two axes. Eyuation (17) prescribes the symmetry 
condition on the x, z symmetry plane containing the centres of the spheres. 

The dimensional drag, lift, and moment coefficients are evaluated from 

M =  r x z d S ,  s, 
where 8 denotes the surface of the sphere, n is the outward unit normal vector a t  the 
surface, r is the position vector from the centre of the sphere, and z is the viscous 
stress tensor. Equations (18)-(20) are evaluated on the side of the external flow. The 
lift force is assumed positive when it  is directed toward the positive z-axis. Owing to 
symmetry, only the y-component of the moment is non-zero arid is assumed positive 
in the counter-clockwise direction. 
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Non-dimensional coefficients of drag, lift, and moment are defined respectively as 

C, = FD/(+pUa .a:). (21) 
c, = F,/(;pv, ..;,, ( 2 2 )  

C, = M.j/(;pplP, na;). (23) 

2.2. LVumPrical solution 

We have developed a three-dimensional implicit finite-difference algorithm to  solve 
simultaneously the set of discretized partial differential equations. The method is 
based on an Alternating-Direction-Predictor-Corrector (ADPC) scheme to solve the 
time-dependent Navier-Stokes equations. ADPC is a slight variation of Alternating- 
Direction-Implicit (ADI) method. It is first-order accurate in time but is effective 
and implemented easily when embedded in a large iteration scheme (Patnaik 1986). 
The control volume formulation is used to develop the finite-difference equations 
from the governing equations with respect to the generalized coordinates (c,  7,Q. 
One of the advantages of the control volume formulation is that all dependent 
variables are conserved over a single control volume, and hence the whole domain 
regardless of the grid fineness. An important part of solving the Navier-Stokes 
equations in primitive variables is the calculation of the pressure field. I n  the prexent 
work, a pressure correction equation is employed to  satisfy indirectly the continuity 
equation (Anderson et al. 1984). The pressure correction equation is of the Poisson 
type and is solved by the Successive-Over-Relaxation (SOR) method. 

The overall solution procedure is based on a cyclic series of guess-and-correct 
operations. The velocity components are first calculated from the momentum 
equations using the ADPC method, where the pressure field a t  the previous time step 
is employed. This estimate improves as the overall iteration continues. The pressure 
correction is calculated from the pressure correction equation using the SOR method, 
and new estimates for pressure and velocities are obtained. This process continues 
until the solution converges at  each time step. For the flow past liquid spheres, the 
same procedure is performed in the flow inside the sphere. The governing equations 
of motion in each flow are solved in an interactive sequence through the interface 
boundary conditions until convergence is achieved for each time step of the 
calculation. 

The generation of the computational grid for the external multi-sphere flows is an 
essential part of the solution procedure. We generate the three-dimensional grid 
efficiently by choosing the outer boundary ofthe physical domain to  be axisymmetric 
about the line connecting the centres of the two spheres and constructing an 
axisymmetric grid. The axisymmetric grid is generated on the ([,q)-plane including 
the line that connects the centres of the two spheres and by using a hybrid method 
of algebraic and differential equation methods. First, we choose the outer boundary 
of the computational grid as the x, y symmetry plane and an incomplete ellipse whose 
centre is located a t  the centre of the sphere, as shown in figure 1 .  We then generate 
a family of quarter-ellipses on the right side of the domain, another family of quzrter- 
ellipses on the left side, and also a family of straight lines emanating from the centre 
of the sphere. Grid density is controlled by the stretching function developed by 
Vinokur (1983). This is followed by solving the quasi-linear elliptic system of 
differential equations using the SOR method with a few (not more than two) 
iterations in order to  smooth the grid lines generated by the algebraic method. In  
figures 2 (a-c), we present a cross-section of the three-dimensional grid a t  do = 21, 10. 
and 3. 
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FIGURE 2. Cross-section of the three-dimensional grid system for (a)  do = 21 ; 
(b )  do = 10; (c) do = 3. 

NlxN2xN3 ‘DP ‘DV c, G 
Rr = 50 

20X21X21 0.706 0.951 1.657 
30 x 31 x 31 0.683 0.934 1.617 
4 0 x 4 1 ~ 4 1  0.676 0.929 1.605 1.58 

K e  = 100 
20 x 21 x 21 0.555 0.593 1.148 
30 x 31 x 31 0.532 0.582 1.114 
4 0 x 4 1 ~ 4 1  0.524 0.581 1.105 1.09 

TABLE 1. Drag coefficients as a function of grid density at Re = 50 and 100 where * denotes the 
data from ltoos & Willmarth (1971) and also Clift et al. (1978). 

3. Results and discussion 
I n  $3.1, we test the accuracy of the full three-dimensional solution procedure by 

predicting the axisymmetric flow over a single (solid and liquid) sphere. I n  $3.2,  we 
discuss the three-dimensional interactions between two solid spheres, and in $3.3,  we 
examine the three-dimensional interactions between two liquid spheres. 

3.1. Flow over a single sphere 
We discuss the flow generated by an impulsively started solid sphere in a quiescent 
fluid a t  two Reynolds numbers : 50 and 100. The time-dependent solution converges 
asymptotically to  a steady state, which is in excellent agreement with available 
experimental data and correlations as shown in tables 1 and 2. Table 1 lists the drag 
coefficients as a function of the computational grid density at Reynolds numbers 50 
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FIGURE 3. Velocity vector fields of (a )  external flow ; (b )  internal flow for the 
axisymmetric flow past a liquid sphere a t  Re = 50. 

N ,  x N ,  x N3 PO, PO, 8, 6,. 
He = 50 

20 x 21 x 21 0.611 -0.1088 136.53 
30 x 31 x 31 0.608 -0.0982 138.10 
40 x 41 x 41 0.604 -0.0954 138.63 139.3 

H e  = 100 
20X21X21 0.555 -0.0924 124.24 
30 x 31 x 31 0.555 -0.0819 125.74 
40 x 41 x 41 0.554 -0.0789 126.25 126.5 

TABLE 2. Pressure a t  the front and rear stagnation points and the separation mgle measured from 
the front stagnation point as a function of grid density a t  Re = 50 and 100, where * denotes the 
data from Taneda (1958) and Clift et al. (1978). 

and 100 respectively, and compares them with the data of Roo8 & Willmarth (1971) 
and also with the correlations of Clift, Grace & Weber (1978). Table 2 shows the 
pressures at the front and rear stagnation points and the separation angle measured 
from the front stagnation point as a function of grid density at Reynolds number 50 
and 100, in comparison with the data of Taneda (1956) and also with the correlations 
of Clift et al. (1978). Although the solution in these test cases are axisymmetric, none 
of the three velocity components in our formulation becomes identically zero. 
Therefore, the three-dimensional solution scheme is fully exercised here. The 
calculations were performed for three different grids, (Nl xN, xN3)  = (20 x 21 x 21), 
(30 x 31 x 31), and (40 x 41 x 41), in a computational domain with an outer boundary 
located at  21 sphere radii from the sphere centre. The dimensionless times needed to 
reach steady state for Reynolds number 50 and 100 are 9 and 15, respectively. 

We tested the solution procedure by varying the far-field boundary condition and 
by changing the location of the outer boundary. In the first test, the far-field outflow 
boundary condition was changed from a free-stream condition to D$/Dt = 0 ($ = u, 
v, or w). There was a little difference in the results for the velocity field in the far wake 
just near the outer boundary, but almost no difference in the drag coefficient and the 
near-wake size (the separation angle and length of the recirculation eddy) at 
Reynolds numbers 50 and 100. In  the second test, the location of the  outer boundary 
was changed from 21 to 33 sphere radii. There was about 1 YO difference in the length 
of the recirculation eddy, but virtually no change in the drag coefficient and t h e  
separation angle of recirculation eddy at both Reynolds numbers. This indicates 
that, even though the boundary condition given by ( 1 1 )  does not allow for a 
momentum defect in the far wake, the error is just local, and the near-field solution 
is only weakly affected. 
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FIGURE 4. Velocity vector fields of (a) external flow; (ti)  internal flow for the 
nxisymmetric flow past, a liquid sphere at Re = 100. 

The axisymmetric test-run for a solid sphere a t  Reynolds number 100 with the 
40 x 41 x 41 grid required a dimensionless time step of At = 0.002 and a total time of 
3.75 Cray Y-MP/8-64 cpu hours. Each time step takes about 1.8 cpu seconds. 

We also solved the flow generated by an impulsively started liquid sphere in a 
quiescent fluid, and the results were in good agreement with available numerical 
studies. Figure 3 ( a ,  b )  shows the steady-state velocity vector distributions of the flow 
past a liquid sphere with viscosity ratio of 25 and density ratio of 300 (internal to 
external fluid) at Reynolds number 50. We observe a closed-streamline wake 
detached from the liquid sphere, and thus no secondary recirculating flow is found 
in the liquid phase (Rivkind & Ryskin 1976; Clift et al. 1978). In  figure 4(a, b )  we 
show the velocity vector distributions for the same parameters as above except that 
the Reynolds number is 100. It is interesting to note that a second circulatory flow 
develops in the liquid-sphere stern region. This behaviour was observed in an earlier 
study by Rivkind & Ryskin ( 1976) where a stream function-vorticity formulation 
was employed. Rivkind & Ryskin (1976) indicated that when the density ratio is 
much greater than the viscosity ratio, i.e. the Reynolds number inside the liquid 
sphere is much greater than the Reynolds number outside, a second circulatory flow 
possibly occurs in the liquid-sphere stern region. The axisymmetric test run for the 
liquid sphere required half the time step for the solid sphere and was about 3.4 times 
slower because of the numerical interaction between the internal and external flows. 

For the interactions between two spheres, an ellipsoid-like domain is chosen in 
order to take into account the interactions when the two spheres are far away from 
each other. As shown in figure 1, a longer outer boundary r m  = 25 is chosen in the z -  
direction, and r m  = 21 is chosen in the a-direction, where CT = (x2+y2)i. The results 
using the above ellipsoid outer boundary for a single sphere were identical in the 
steady axisymmetric flow calculations to those using the spherical outer boundary. 

The results of the 30 x 31 x 31 grid differ by only 0.8 % in the drag coefficients and 
0.4% in the separation anglew from those of the 40 x 41 x 41 grid as shown in tables 
1 and 2. The percentage difference was calculated as follows. Let the result of the 
30 x 31 x 31 grid be X, and the result of the 40 x 41 x 4 1  grid be 8,. Then, the 
percentage difference is (A, - ~ S ' ~ ) / f l , .  Thus, we chose the medium-size grid 
30 x 31 x 31, and 15 x 31 x 31 inside the liquid sphere, for the following calculations. 
A typical run for the solid sphere with the 30 x 31 x 31 grid required 0.8 cpu hours 
on the Cray Y-MP/8-64; the liquid sphere run with the same grid required 2.7 cpu 
hours. 15 runs were made for each Reynolds number to cover the range of 
1.5 < do < 25. 

We did not perform calculations for Reynolds number higher than 150, because it 
is known that the wake becomes unstable a t  a Reynolds number in the range of 
13CL220 for a single sphere (Taneda 1956; Goldburg & Florsheim 1966; Roos & 
Willmarth 1971 ; Nakamura 1976; Kim & Pearlstein 1990) and our present goal is to 
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FIGURE 5. Sketch of typical streamlines over one of the two solid spheres in the principal plane 
(x, z-plane) a t  Re = 100 for (a) axisymmetric flow; ( b )  d, = 2 ; ( c )  d, = 1.5. 

obtain steady-state solutions. For the solution of' a flow including the three- 
dimensional unsteady wake, a complete computational domain (i.e. encompassing 
the two spheres without a symmetry plane) and periodic boundary conditions in 
<-direction will be necessary. 

3.2. lnteractions of two solid spheres 
3.2.1. Flow structure 

In  order to illustrate better the fluid motion, we consider the flow field in the (x, z ) -  
plane of symmetry, which is defined as the principal plane, where the narrowest 
path between the two spheres occurs, hence the strongest interactions between them. 

Figure 5 ( a )  displays a sketch of the actual streamlines around a single sphere in the 
principal plane a t  Reynolds number 100. As expected, two identical counter-rotating 
vortices (corresponding to a single vortex ring) exist in the wake, and the 
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downstream stagnation point is located on the axis of symmetry. Line 1-11 
connecting the front and rear stagnation points in the standard axisymmetric flow 
over a single sphere will be used as a reference line : we refer to the region above this 
line as the ‘top ’ or ‘upper ’ region and that below as the ‘bottom ’ or ‘lower ’ region. 

Figure 5 ( b )  displays a sketch of the actual streamlines around one of the two 
spheres in the principal plane a t  Reynolds number 100. The two spheres are 
separated by a distance do = 2. Owing to the blockage of the flow in the gap between 
the two spheres, the streamlines diverge away from the 2, y symmetry plane (located 
a t  z = - d o )  as they approach the front stagnation region. Thus, the stagnation 
streamline of the single-sphere case (I-S, in figure 5 a )  no longer intersects the sphere, 
and another streamline closer to the symmetry plane meets the sphere to form the 
new front stagnation streamline at  point P. As a consequence, the fluid particles 
move faster in the lower left region around the sphere than in the upper left region, 
and this causes the pressure in the lower left region to be lower than that in the upper 
left region. The resulting pressure difference between the upper and lower left regions 
is higher than that between the bottom of the sphere and the narrow path. This 
pressure imbalance, which will be discussed in $3.2.2, causes repulsion of the two 
spheres. The contribution of shear stress differences to the repulsion will also be 
discussed in $3.2.2. 

Figure 5 ( b )  shows an interesting streamline pattern in the wake region. Two 
counter-rotating eddies exist in the wake but their configuration is quite different 
from that for axisymmetric flow. The lower eddy is formed by the fluid separating 
on the lower portion of the sphere as in the case of axisymmetric flow. The upper 
eddy is not formed by the fluid separating on the upper portion of the sphere, but 
rather by the fluid turning around the lower eddy and being entrained by the upper 
flow. This upper eddy is detached from the sphere. A portion of the fluid moving 
around the bottom of the sphere passes between the detached upper eddy and the 
sphere. The streamline A-B encompassing the upper eddy intersects itself, and the 
intersection point, C, designated as the downstream stagnation point, is shifted 
toward the x,y symmetry plane. Both eddies are smaller than those of the 
axisymmetric flow. These new features can be explained as follows. The pressure 
above the upper wake is less than that below the lower wake owing to the increased 
acceleration of the fluid in the narrow path between the two spheres (as will be shown 
in figure 7). Thus, the fluid particles turning around the lower eddy are pushed into 
the upper region of the wake. The pressure distribution around the sphere will be 
discussed further in $3.2.2. 

Figure 5(c) shows a sketch of the actual streamline pattern a t  Reynolds number 
100 for the case do = 1.5. The shifting of the front stagnation streamline and 
stagnation point toward the x, y symmetry plane is more obvious here than in the 
previous case of do = 2. The significant difference is in the wake region where both the 
upper eddy and downstream stagnation point vanish. Fluid particles separating on 
the upper portion of the sphere move downstream without returning (streamline 
D-E). On the other hand, fluid particles turning around the lower eddy move into the 
upper region of the wake until they reach near the upper separation point, D, and 
then move downstream in an S-shaped path (streamline F G )  without returning to 
form an eddy. The lower eddy shrinks as the two spheres become closer, and the 
pressure difference between the top and bottom of the wake is larger. 

It is interesting to examine the changes in the separation region at the sphere 
surface for the cases do = 2 and 1.5. More specifically, we examined the behaviour of 
the circle of intersection of the wake and the sphere. Our results show that the circle 
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FIGURE 6. Velocity vector fields over one of the two solid spheres in the principal plane 
corresponding to (a) figure 5 ( b ) ,  do = 2 ;  ( b )  figure 5 ( c ) ,  do = 1.5. 

is slightly shifted toward the x, y symmetry plane due to the decreased pressure in the 
gap region with respect to that in the wake lower region. This shifting produces 
separation angles a t  the top, middle, and bottom of the sphere with values of 123.1", 
126.5', and 126.2" respectively for the case do = 1.5, where the angles are measured 
from the front stagnation point of the axisymmetric flow case. This is in contrast 
with an angle of 125.7" at all positions for a single sphere. 

Figure 6 (a) shows the computed velocity vector field corresponding to figure 5 ( b ) ,  
do = 2. The velocity vectors upstream of the front stagnation point, S,, for 
axisymmetric flow point downwards away from the x, y symmetry plane. This 
indicates that the front stagnation point (P in figure 5 b ) ,  is shifted toward the x, y 
symmetry plane. Similar behaviour occurs at the rear stagnation point (& in figure 
5 b ) .  Figure 6 ( b )  shows the computed velocity vector field corresponding to figure 
5(c), do = 1.5. 

One of the advantages of the velocity vector plot is that it shows clearly the 
relative magnitude of velocity in the flow field, e.g. the smaller velocity in the wake 
region compared to that outside the wake is seen in figure 6(a, b) .  However, it  is 
difficult to obtain streamlines directly from the tangents of the velocity vector plot. 

A stream function y% cannot be defined and calculated from the velocity in the 
principal plane owing to the existence of a divergence associated with the third 
component of velocity. Nevertheless, for descriptive purposes only, it is convenient 
to use the algorithm 

y%& 00) = &d%%) + -u*dr (24) I 
to present approximations to the streamline pattern. It is understood that since a 
true stream function does not exist, the pseudo-stream function is dependent upon 
the integration path. The above algorithm specifically involves only radial 
integration; ug can be recovered by differentiation of this function, but u, cannot be 
recovered. The streamlines presented in figures 5 (a-c) were based on this algorithm. 

Phenomena in the wake similar to those described above have been found in a few 
previous studies. Rosfjord (1974) obtained results similar t o  those in figures 5 ( b )  and 
5 ( c )  in his experimental and numerical studies of the recirculating flow region 
between two-dimensional parallel separated jets. He found that for velocity ratios 
between two jets equal to 1.11 and 1.25 (upper to lower), two eddies exist near the 
injector face, but the upper eddy is detached from the injector face, and a portion of 
the fluid originating a t  the lower jet is entrained by the upper jet, passing between 
the detached upper eddy and the injector face. He also reported that for a velocity 
ratio of 1.4, only the lower eddy existed and a complete entrainment of the weaker 
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PIQURR 7.  (a)  Pathliries of' two fluid particles (A and R) slightly above the principal plane 
( y  = 0.001) of'the two solid spheres. (6, c )  Pathline of a fluid particle ( C )  whose initial position was 
(x, y, z = 0.995,0.575,0) : ( b )  a view from top of the sphere looking toward the z ,  y symmetry plane; 
(c) a side view looking normal to the z,y symmetry plane. 
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Angle (deg.) 
FIGURE 8. Distribution of the pressure coefficient around the solid sphere in 

the principal plane at Re = 100 for do = 1.5. 

jet was observed. I n  particular, the flow S-shaped loop near the stronger jet was 
clearly indicated. Recently, Dandy & Dwyer (1990) also found a flow pattern similar 
to  figure 6 ( b )  in their numerical study of steady uniform shear flow past a single solid 
sphere. 

In order to  facilitate the visualization of the three-dimensional character of the 
flow in the wake region discussed above, we present the pathlines of selected fluid 
particles in figure 7 (a-c), at Reynolds number 100 for do = 2, where the free-stream 
direction is from left to  right. The pathlines x ( x ~ , ~ ~ , x ~ , ~ ) ,  where the subscript, 0 
denotes initial particle location, were obtained by solving three coupled ordinary 
differential equations dx/dt = u ( x ) ,  via a fourth-order Runge-Kutta method. 

We first selected two fluid particles (A and B) slightly above the principal plane 
(y=O.OOi) separated by a small distance (much smaller than the sphere radius) 
in the wake region. Figure 7 ( a )  shows that particle A follows an S-shaped pathline. 
On the other hand, particle B follows a closed-loop pathline as was discussed in t$he 
previous section. 

We then examined the pathline of a fluid particle C whose initial position (x", yo, 
zo = 0.995,0.575,0) was in the wake region but above the principal plane. Figure 7 ( b )  
(a view from top of the sphere looking toward the x, y symmetry plane) shows that 
the fluid particle C first follows a helical pathline as i t  approaches the x, y symmetry 
plane and then moves downstream. Figure 7 (c)  is a side view (looking normal to  the 
X, y symmetry plane) of that  pathline. 

3.2.2. Pressure and shear stress distribution 
Figure 8 shows the pressure coefficient, 2(p--p,)/pU,, around one of the spheres 

in the principal plane at Reynolds number 100 for do = 1.5. On average, the pressure 
is higher on the top, contributing to a positive lift force. The pressure on the bottom 
of the sphere is lower between 0" and 87.6" and also slightly lower between 159' and 
180" in the wake region than that on the top of the sphere, where the angle is 
measured from the front stagnation point (0 = 0) of the axisymmetric flow case. On 
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FIGURE 9. Distribution of shear stress coefficient around the solid sphere 
in the principal plane at Re = 100 for d, = 1.5. 

the bottom of the sphere, the minimum pressure occurs at  an angle less than 90". On 
the top of the sphere, the minimum pressure occurs at an angle greater than 90" and 
is lower than the minimum pressure on the bottom of the sphere. The maximum 
pressure occurs a few degrees toward the x, y symmetry plane measured from 6' = 0. 
The highest pressure in the wake region occurs a few degrees toward the x,y 
symmetry plane measured from 8 = 71. These observations indicate that the front 
and rear stagnation points are shifted a few degrees toward the x, y symmetry plane. 

Figure 9 shows the tangential shear stress coefficient, 2r,,/p~i2,, in the same plane 
used for the pressure coefficient in figure 8. Note that the clockwise direction is 
considered positive for the shear stress on the top of the sphere, and the 
counterclockwise direction is considered positive for the shear stress on the bottom. 
It is seen that the shear stress, on average, is higher around the lower part of the 
sphere than around the top. In  particular, the magnitude of the shear stress is higher 
in the lower regions 6' = 0 to 63.6 and 0 = 165.5 to IF than on the top of the sphere. 
It is also important to note that, owing to their inclinations with the x-axis, the shear 
forces on these two lower regions contribute to both the lift (parallel to the z-axis) 
and drag (parallel to the x-axis), whereas the shear force a t  the top of the sphere 
contributes mainly to the drag, Thus, the shear forces in this case contribute, along 
with the pressure forces, to the repulsion of the two spheres. The shear stress at 
8 = 0 is not zero but acts counterclockwise, and the shear stress at  6' = IF is not zero 
but acts clockwise. Therefore, the front and rear stagnation points are shifted a 
few degrees toward the x, y symmetry plane. Another interesting feature is that the 
separation angle where the shear stress vanishes on the top of the sphere is 123.1", 
but that angle on the bottom is 126.2". The computed separation angle of 125.7' for 
the axisymmetric flow case with the medium-size grid was shown in table 2. Thus, 
the reverse flow in the wake region is shifted upwards toward the x, y symmetry 
plane. 

We examine next the tangential velocity profiles, ug(r) ,  at two different @locations 
on the bottom and top of the sphere in the principal plane at Reynolds number 100 
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FIGURE 10. Tangential velocity profile on the bottom and top of the solid sphere in the 
principal plane at (a) 0 = 36"; ( b )  B = 84". ---, single sphere; . . . . . . , bottom; ----, top 

for do = 1.5. Figure lO(a) shows the tangential velocity profiles at  0 = 36" on the 
bottom and top of one of the spheres, in addition to that for the axisymmetric case 
as a reference. It is seen that the maximum velocity a t  the bottom is higher than at 
the top, as mentioned earlier in the discussion of figure 5 ( b ) .  It is also seen that the 
velocity gradient a t  the sphere surface is higher a t  the bottom than at  the top, hence 
the higher shear stress a t  the bottom as explained earlier (see figure 9). Figure 10(b) 
shows the tangential velocity profiles at 8 = 84" on the bottom and top of the sphere, 
in addition to that for the axisymmetric case. It is seen that now the velocity 
gradient at the top wall is 26% higher than a t  the bottom although the maximum 
velocity a t  the top is only 3% higher than the maximum value a t  the bottom. The 
reason is that the boundary-layer growth at the top is limited by the interaction with 
the boundary layer of the; other sphere. 

3.2.3. Lift coeficients 

In the following discussion, we classify the proximity of the two spheres into three 
regimes: close, intermediate: and far separated, depending on the values of do and 
Reynolds number. 

Figure 11 (a-c) show the total lift coefficient and the lift coefficients due t o  viscous 
and pressure contributions, respectively, as a function of do at Reynolds numbers 50, 
100, and 150. The total lift coefficient, figure 11 (a), is positive when the two spheres 
are close (do < 7.9 for Re = 50, do < 4 for Re = 100, and do < 3.4 for Re = 150). That 
is, the two spheres repel each other, and the repulsion is stronger the closer they are. 
Our results show that both the viscous and pressure contributions have an important 
effect on the repelling force, but the pressure contribution is more dominant when 
Re 2 100 (compare figure 1 1 6 , ~ ) .  On the other hand, the total lift coefficient is 
negative and relatively small - that is, the two spheres attract each other weakly 
- a t  intermediate separation distances (7.9 < do < 21 for Re = 50,  4 < do < 21 for 
Re = 100, and 3.4 < do < 21 for Re = 150). At these distances, the pressure is the 
main contributor to the attraction force a t  all Reynolds numbers. The smaller the 
Reynolds number is, the smaller the pressure effect, the weaker the attraction, and 
the narrower the region of attraction. When do 3 21, however, the lift vanishes, and 
the two spheres have no interactions a t  any Reynolds numbers. 

As discussed in $3.2.1, when the two spheres are in close proximity, the front 
stagnation point is shifted toward the x,y symmetry plane, and the fluid particles 
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FIGURE 12. Moment coefficient of the solid spheres as a function of do a t  Re = 50, 100, and 150. 

Symbols as figure 11. 

accelerate faster in the lower left region t,han in the upper left region of the sphere. 
This difference in acceleration results in a net negative pressure gradient normal to 
and away from the x, y symmetry plane, contributing to  the repulsion between the 
two spheres. The shear stress is also higher in the lower left region than in the upper 
left as shown in figure 9. Furthermore, owing to its inclination with the x-axis, the 
shear force in the lower left region contributes to both the lift (parallel to  t.he z-axis) 
and drag (parallel to the x-axis), whereas the shear force a t  the top of the sphere 
contributes mainly to  the drag. Therefore, both the pressure and shear forces 
contribute to a positive lift force (i.e. the two spheres repel each other) when the two 
spheres are close. 

On the other hand, when the two spheres are in the intermediate separation 
regime, the velocity vector distributions show that the front stagnation streamline 
is almost straight, and thus the flow in the lower left region is not affected by the 
presence of the other sphere. Nevertheless, the gap between the two spheres causes 
the flow to accelerate slightly faster on the top of the sphere than on the bottom and, 
as a result, the average pressure in the lower region is slightly higher than that in the 
narrow gap. Thus, the two spheres attract each other weakly, and the attraction 
force is mainly due to the pressure distribution. The shear force, nearly parallel to the 
x-axis a t  the top of the sphere, contributes mainly to the drag but not t,o the lift. 

3.2.4. Momen,t and drug coeficients 

Figure 12 shows the moment coefficient as a function of dimensionless distance at  
Reynolds numbers 50, 100, and 150. The moment coefficient is positive when the two 
spheres are close (do < 4.6 for Re = 50, do < 2.5 for Re = 100, and do < 1.96 for Re = 
150), that is, the two spheres experience positive torque, and the torque becomes 
stronger the closer they are. On the other hand, the moment coefficient is negative 
at intermediate separation distances. The moment essentially vanishes, and the two 
spheres have negligible interactions with each other when do 2 21. In  our 
calculations, the solid spheres were not allowed to rotate under the influence of the 
torque. 
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When the two spheres are close, the shear stress, on average, is higher around the 
lower part of the sphere than around the top, and thus they experience positive 
torque. On the other hand, when the spheres are at  the intermediate separation 
distances, slightly higher velocity in the gap leads to slightly higher shear stress on 
the top than on the bottom of the sphere, and this causes the spheres to  experience 
weak negative torque. 

We note that the torque acting on the sphere is relatively small, and the moment 
coefficient is less than 1 % of the drag coefficient for all the separation distances and 
Reynolds numbers. The main reason for this is that the torque depends only on the 
distribution of the shear stresses (7,0 and T ~ ~ )  and, as shown in figure 9, the shear 
stress on the top of the sphere counteracts that on the left bottom of the sphere. 

Figure 13 shows the drag coefficient as a function of the dimensionless distance at  
Reynolds numbers 50, 100, and 150. The drag increases with decreasing do when do 
is less than 4 for all Reynolds numbers. It increases slightly with increasing do at 
intermediate separation distances, and eventually tends to that of a single sphere 
when do 2 21. The drag increases as the two spheres get close because the shear stress 
on the sphere is increased and the pressure distribution is changed owing to the flow 
acceleration on the lower left region as well as in the gap between them, as shown in 
figures 8 and 9. 

3.3. Interactions of two liquid spheres 
In  the analysis of the flow field past two liquid spheres, we use a viscosity ratio 
(internal fluid to external fluid) of 25 and density ratio of 300. These values are 
typical of liquid-hydrocarbon fuel in a high-temperature high-pressure surrounding 
gas generally encountered in gas turbine combustors (Raju & Sirignano 1990). 

As in the solid-sphere case, we examine the flow field for two liquid spheres in the 
(x, %)-plane of symmetry, the principal plane, where the narrowest path between the 
liquid spheres is encountered. Figure 5(u-c) discussed in 83.2.1 can also represent 
typical streamlines in the external flow of liquid spheres. However, there are 
differences from the solid-sphere case. First, the angle, measured from 6' = 0, at 
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FIGURE 14. Velocity vector fields in the principal plane for a liquid sphere 
at Re = 100 for do = 2:  ( a )  external flow; ( b )  internal flow. 

FIGURE 15. Velocity vector fields in the principal plane for a liquid sphere 
at Re = I00 for do = 1.5: (a)  external flow; ( b )  internal flow. 

which separation occurs on the sphere surface is much higher than that of the solid 
sphere. Second, a closer examination of the velocity plot (figures 14a and 15a) in the 
wake region indicates that the separating streamline, instead of being nearly normal 
to the sphere surface, now curves closer to the sphere surface, producing a 'squashed' 
recirculation zone. This behaviour was also seen in the velocity vector field of 
axisymmetric flow in figure 4(a). The length of the recirculating eddy is also slightly 
smaller than that of the solid sphere. 

Figure 14 (a,  b )  shows the velocity vector fields of the external and internal flows, 
respectively, in the principal plane at Reynolds number I00 where the two spheres 
are separated by a distance do = 2. A secondary eddy in the liquid-sphere stern region 
is evident in both the upper and lower regions in the principal plane, but the eddy 
centres in both regions are asymmetrical with respect to the z = 0 plane. Also, these 
eddies are concomitant with the occurrence of the eddies in both regions in the 
external flow. Figure 15(a, 6) shows the velocity vector fields of the external and 
internal flows in the principal plane at  Reynolds number 100 for the case of do = 1.5. 
The secondary internal eddy in the liquid-sphere stern region exists only in the lower 
region, and the secondary eddy in the upper region no longer exists. The vanishing 
secondary internal eddy in the upper region is accompanied by the disappearance of 
the recirculating eddy in the upper region in the external flow. 

Calculations of the lift, moment, and drag coefficients were performed for 
dimensionless distances from the liquid sphere centre to the symmetry plane between 
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FIGURE 16. Total lift coefficient of the liquid spheres as a function of do 

a t  Re = 50 (O), 100 (m), and 150 (A). 

FIQURE 17. Moment coefficient of the liquid spheres as a function of do 
at Re = 50, 100, and 150. Symbols as figure 16. 

two liquid spheres in the range 1.5 < do < 25, for a viscosity ratio of 25 and density 
ratio of 300 at Reynolds numbers 50, 100, and 150. Figures 16, 17, and 18 show the 
coefficients of total lift, moment, and drag as a function of dimensionless distance at 
Reynolds numbers 50, 100, and 150. The coefficients of total lift, moment, and drag 
are slightly smaller in absolute value than those for the solid spheres at both the 
repelling and attraction separation distances and at  all Reynolds numbers. The lower 
coefficients of the liquid sphere are attributed to the surface motion of the liquid 
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FIGURE 18. Drag coefficient of the liquid spheres as a function of do at 

Re = 50, 100, and 150. Symbols as figure 16. 

sphere which reduces the velocity gradient and friction force. A smaller drag 
coefficient for the liquid sphere in axisymmetric flow has been also found in earlier 
calculations (Clift et al. 1978). 

4. Conclusions 
Three-dimensional flow interactions between two identical (solid or liquid) spheres 

which are held fixed, with the line connecting the sphere centres normal to a uniform 
stream, have been investigated at Reynolds numbers 50, 100, and 150 as a first step 
towards understanding the three-dimensional interactions with a large concentration 
of particles. 

First, the interactions between two solid spheres have been investigated for a 
dimensionless distance in the range 1.5 < do < 25. 

The two spheres repel each other when they are close (do < 7.9 for Re = 50, 
do < 4 for Re = 100, and do < 3.4 for Re = 150), and the repulsion is stronger the 
closer they are. On the other hand, the two spheres attract each other weakly 
at  intermediate separation distances (7.9 < d, < 21 for Re = 50, 4 < do < 21 for 
Re = 100, and 3.4 < do < 21 for Re = 150). For do 3 21, however, the lift vanishes, 
and the two spheres do not interact at  any Reynolds numbers. 

The two spheres experience positive torque when they are close (do < 4.6 for Re = 
50, do < 2.5 for Re = 100, and do < 1.96 for Re = 150), and the torque is stronger the 
closer they are. On the other hand, the moment coefficient is negative at intermediate 
separation distances. The moment vanishes, and the two spheres do not interact 
when do 2 21. The drag on the spheres increases when d, is less than 4 for all 
Reynolds numbers. It increases slightly at  intermediate separation distances, and 
eventually, tends to that of a single sphere when do >, 21. 

The flow structure ahead of each sphere is such that the streamlines shift away 
from the x, y symmetry plane due to  the flow blockage in the gap between the two 
spheres as they approach the front stagnation region. Also, interesting phenomena 
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in the near wake have been discovered as the gap between the two spheres decreases. 
When do = 2, the upper eddy is not formed by the fluid separating on the upper 
portion of the sphere, but rather by the fluid turning around the lower eddy and 
detached from the sphere. Furthermore, when do decreases to 1.5, both the upper 
eddy and downstream stagnation point vanish. 

The interactions between two liquid spheres have been also investigated for the 
dimensionless distance in the range 1.5 < d o  < 25 for a viscosity ratio of 25 and 
density ratio of 300 a t  Reynolds numbers 50, 100, and 150. 

The magnitudes of the lift, torque, and drag on the liquid spheres are slightly 
smaller in absolute value than those of the solid spheres at all the separation 
distances and all Reynolds numbers. The flow structure in the external flow of the 
liquid spheres is quite similar to that of the solid spheres, except that the separation 
angle is much higher than that of the solid spheres and the separation streamline is 
bent closer to the sphere surface producing a ‘squashed’ recirculation zone. 
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